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The electrical properties of the cellular membrane are important for ion transport across cells and electro-
physiology. Plasma membranes also resist bending and stretching, and mechanical properties of the membrane
influence cell shape and forces in membrane tethers pulled from cells. There exists a coupling between the
electrical and mechanical properties of the membrane. Previous work has shown that applied voltages can
induce forces and movements in the lipid bilayer. We present a theory that computes membrane bending
deformations and forces as the applied voltage is changed. We discover that electromechanical coupling in lipid
bilayers depends on the voltage-dependent adsorption of ions into the region occupied by the phospholipid
head groups. A simple model of counter-ion absorption is investigated. We show that electromechanical
coupling can be measured using membrane tethers and we use our model to predict the membrane tether
tension as a function of applied voltage. We also discuss how electromechanical coupling in membranes may
influence transmembrane protein function.
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I. INTRODUCTION

In living organisms, large electric fields are mostly absent,
except in the vicinity of the cell membrane where the electric
potential may change by hundreds of millivolts over a dis-
tance of 4–6 nm. Experimental evidence suggests that a par-
ticular electromechanical coupling occurs naturally in lipid
bilayers: the so-called flexoelectric effect �1,2�. This phe-
nomenon is an analog of the electromechanical behavior of
piezoelectric crystals. In addition to changing linear dimen-
sion, lipid bilayers also undergo curvature changes as volt-
ages are applied. Two kinds of flexoelectricity are typically
discussed: The direct flexoelectric effect describes changes in
the membrane polarization resulting from changes in curva-
ture. The converse flexoelectric effect describes spontaneous
changes in curvature which occur in response to applied
electric fields. In this paper, we relate the molecular level
charge distributions in the lipid bilayer to measurable mac-
roscopic mechanical properties using a theoretical model.
The model predicts that voltage and curvature-related ion
adsorption at the bilayer-solvent interface is the essential
physical process that gives rise to flexoelectricity. Predictions
of the theory can be checked experimentally by measuring
the tensile forces in lipid tethers attached to voltage-clamped
cells �3–5�.

The coupling of voltages to interfacial surface tensions
has been a topic of investigation since the experiments of
Lippmann �6,7�. Flexoelectricity in lipid bilayers was first
experimentally observed in the 1970s when AC currents
were detected in membranes subjected to mechanical oscil-
lations �direct effect� �8�. Since then, increasingly reliable
measurements have been obtained for the converse effect.
Experiments have measured oscillations of bilayer patches
subjected to AC voltages �9� and atomic force microscope

�AFM� tip deflections have been used to quantify the effect
in a whole cell voltage-clamp setup �10,11�.

The traditional description of flexoelectricity is phenom-
onelogical; curvature and voltage are related through the
flexocoefficients �12,13�. To date, theoretical models have
been limited to the direct effect �14�, the electrostatic contri-
bution to the bending modulus �15–18�, and conformational
instabilities in the presence of applied electric fields �19�. To
our knowledge, no previous work has addressed voltage-
driven bilayer bending and this is the main goal of this paper.
We present a molecular-scale model of charge interaction to
address electromechanical coupling and the flexoelectric ef-
fect. The model used is based on a density functional ap-
proach, utilizing the Marcus model of charge solvation in a
dielectric medium �20,21�. We compute the bending energet-
ics of the membrane subjected to an applied voltage. Absorp-
tion of ions into the bilayer surface is addressed through the
inclusion of a molecular potential corresponding to the phos-
pholipid chemical environment. This may be regarded as an
extension of the Gouy-Chapman approach �e.g., see �22��.
Alternative models such as the Langmuir adsorption iso-
therm are also discussed, but we find that the alternative
models give qualitatively similar results and represent a
quantitative change only. The results of the model can be
assessed experimentally in simple cylindrical geometries
such as in a membrane tether. The influence of electrome-
chanical coupling on membrane protein function is also ad-
dressed.

II. ELECTROMECHANICAL MODEL
OF THE LIPID BILAYER

The theoretical approach is to consider the lipid bilayer as
a spatially inhomogeneous dielectric decorated with solvated
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charge distributions. Our model bilayer consists of symmet-
ric leaflets containing a mixture of anionic �25%� and zwit-
terionic �75%� phospholipid molecules. The surplus negative
charge is balanced by positive counterions, which reside both
within the region occupied by the phospholipid headgroups
as well as the neighboring electric double layers.

The total free energy of a lipid bilayer can be formally
written as a sum of electrical and mechanical contributions,

F = Fel + Fm. �1�

The exact forms of these free-energy functionals are not
known. A number of models have been developed to de-
scribe membrane mechanics �23–25�. The Helfrich model
describes the membrane as an elastic surface connected to a
lipid reservoir, and uses 2 mechanical constants, � and � to
describe bending and stretching deformations, respectively
�23�,

Fm =� dA�1

2
�c2 + �� . �2�

The integral is over the bilayer surface and c is the total
curvature �for geometries considered in this work, Gaussian
curvature is either zero or an invariant and is neglected�.
Writing the free energy in the form of Eq. �1�, the constants
� and � will describe the mechanical contributions only, as if
the membrane does not have charges.

The electrostatic free energy, Fel, determines the equilib-
rium charge configuration of the membrane. More precisely,
the electrostatic free energy function should determine two
fields: the polarization �dipole field� in the medium, p�x�,
and the distribution of charges in the medium ��x�. We re-
gard the bilayer as a set of continuous charge distributions in
a varying dielectric medium. The details of these charges are
described in Fig. 1. The charges are of three types: bilayer
charges of the phospholipid headgroups, �0, positive ions
which have adsorbed into the bilayer surface, n+, and exter-
nal ionic charges, �ions=en+−en−. The total charge distribu-
tion is then

��x� = �0�x� + en+�x� − en−�x� , �3�

of which we assume �0 is fixed to the bilayer medium and n�

are allowed vary. Note that n+ ranges from the “interior” of
the bilayer into the medium, but n− only exist in the medium.
This is because there is a favorable binding interaction be-
tween �0 and n+ �see below�, but unfavorable interaction
between �0 and n−.

The electrostatic free energy of these charges can be mod-
eled using the Marcus theory of polarizable media �20,21�. In
this model, Fel is a functional of n+�x�, n−�x� and p�x�, and is
composed of several parts.

Fel = Ec + Ep + Ev − TS , �4�

Ec is the Coulomb energy,

Ec =
1

2
� dx��x��0�x� , �5�

where � is the total charge density, and �0 is the electrostatic
potential from � in a vacuum:

�0�x� =� dx�
��x��

�x − x��
. �6�

The excess polarization energy is
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FIG. 1. �Color� Charge distributions in a flat bilayer. We con-
sider a model bilayer which is a mixture of 75% zwitterionic phos-
pholipid �phosphaditylcholine� and 25% anionic phospholipid
�phosphatidylserine�. The surrounding aqueous medium is a 150
mM 1:1 electrolyte. �a� The relative permittivity of the medium. �b�
Charge densities used in the model. The intrinsic charges for the
bilayer, �0 are from �26–28�. These correspond to the molecular
structure of the phospholipid molecules. Additionally, mobile bi-
layer charges, n+, represent adsorbed counterions. These are dy-
namic and allowed to respond to voltages. The densities integrate so
that the overall charge per unit area for each leaflet is −0.02 C /m2

at vanishing potential difference �+0.06 C /m2 for the combined
positive charges and −0.08 C /m2 for the negative charges.� �c� The
molecular field, ��x� in Eq. �23�, is used to compute the amount of
adsorbed charges at the surface of the bilayer as the applied voltage
is changed.
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Ep =
1

2
� dx

4�

��x� − 1
p2�x� +

1

2
� dx� dx�

� · p�x��� · p�x��
�x − x��

−� dx� · p�x��0�x� �7�

where ��x� is the dielectric constant and p is the polarization.
The Marcus theory assumes that charges only interact

with each other through the polarizable medium. At the lipid-
solvent interface, however, the phospholipid head groups
also chemically bind with the positive mobile ions. There-
fore, there should be another term that accounts for the
chemical energy of n+ binding to the phospholipid head-
groups through an interaction potential, V,

Ev =� dx� dx�n+�x�V�x,x���0�x�� �8�

The functional form of V is not known, but we may write

Ev →� dxn+�x���x� �9�

with

��x� =� dx��0�x��V�x,x�� . �10�

Specific values for � may be fit to charge distributions ob-
tained from molecular simulations performed under zero-
voltage conditions �see the bottom panel of Fig. 1� �26–28�.
We assume that ��x� is independent of bilayer curvature and
applied voltage. These assumptions are unlikely to be correct
and are made due to the lack of available data.

The entropy component of the free-energy functional
treats the mobile ions as solutes in an ideal solvent,

− TS = kBT	
i=�
� dxni�x��ln

ni�x�
n0

− 1� �11�

where n0 is the bulk ion concentration. In principal, there
should also be an entropy contribution from the lipid charges
�0, however, this is neglected since these charges are “fixed”
to the bilayer, and the density changes during bending do not
lead to any appreciable changes in the entropic free energy.

Equation �4� is the precursor to the constitutive equations
of electrostatics after variations with respect to p�x�, n+�x�,
and n−�x�. These coupled equations are

	Fel

	p�x�
= 0, �12�

	Fel

	n+�x�
= 0, �13�

	Fel

	n−�x�
= 0. �14�

Equation �12� leads to the following equation for the equi-
librium polarization:

4�

��x� − 1
p�x� + ��0 − �� dx�

�� · p�x��
�x − x��

= 0, �15�

which can be rewritten as

p�x� =
��x� − 1

4�
E�x� , �16�

from which the definition of the electrostatic field emerges,

E�x� = − ��0�x� + �� dx�
�� · p�x��

�x − x��
. �17�

Since the electric displacement is defined as D�x�=E�x�
+4�p�x�, we also recover the correct constitutive relation of
electrostatics. Since the electric displacement satisfies
� ·D�x�=4���x�, the minimized polarization field satisfies
the Poisson equation:

� · ��x�E�x� = − � · ��x� � ��x� = 4���x� , �18�

where ��x� is the total electrostatic potential, and is related
to the minimum polarization by

��x� = �0�x� −� dx�
�� · p�x��

�x − x��
. �19�

In practice, it is equivalent to solve the Poisson equation of
Eq. �18� or solve the self consistent Eq. �15�. In our calcula-
tions, we solve Eq. �18� to find �, E and the equilibrium p.
Once p is found, the electrostatic energy terms simplify and
become

Ec + Ep =
1

2
� dx��x��0�x� +

1

2
� dxp�x� · ��0�x� .

�20�

It may also be shown that the variation of the minimized
electrostatic energy with respect to the charge distribution is

	�Ec + Ep + Ev�
	��x�

= ��x� . �21�

In the solvent region, Eq. �14� gives

kBT ln
n−�x�
n0

� − e��x� = 0 �22�

which is the usual Boltzmann distribution for the negative
mobile charges: n−�x�=n0e
e��x�. Similarly, Eq. �13� yields
the distribution

n+�x� = n0e−
�e��x�+��x��. �23�

In the solvent, �→0 and the ions satisfy the Poisson-
Boltzmann Equation. Within the bilayer, the positive ions
may respond to changes in their electrostatic environment.
The model used here is mean field throughout and, therefore,
neglects ion correlations. Adsorption of finite-sized ions onto
a surface can be alternatively treated using an Ising-like
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model, with the population of adsorbed ion determined by
the Langmuir Isotherm �29�,

n+�x� =
n0

1 + Ke
e���xI�−�b� . �24�

Here, K is a constant that is chosen to obtain the desired
charge adsorption concentration at zero voltage and �b is
the potential in the bulk. We found the results from both of
these approaches to be qualitatively the same, with a reduc-
tion in the magnitude of electromechanical coupling of
around 30% when using Eq. �24� rather than Eq. �23�.

The modeling approach here allows us to compute the
free energy of a bilayer system as a function of the applied
voltage and the geometry of lipid charge distributions. For
instance, if the bilayer is bent, �0 in the inner and outer
leaflet compress and expand leading to a change in the over-
all free energy. Thus, by investigating the electrostatic free
energy as a function of bilayer curvature c and the applied
voltage V0, we can predict the electrostatic contributions to
electromechanical coupling. This paper considers simple ge-
ometries, but complicated charge distributions can be inves-
tigated in the same way.

Our computational scheme is to solve the constitutive
equations self-consistently. A shooting procedure is em-
ployed to integrate Eqs. �18�, �22�, and �23� subject to the
boundary conditions limx→�� ��=0. Integration is carried
out using the second order Taylor formula. In cylindrical
coordinates this is

�i+1 = �i + dr�i� +
dr2

2
��i� +

1

ri
�i�� , �25�

where �i is the value of the potential at position ri and dr is
the grid spacing. The derivatives �i� and �i� are obtained
through Gauss’ Law and the Poisson Equation, respectively.

�i� = −
1

�i

Qi

Ai
, �26�

�i� = −
1

�i
��i + �i��i�� −

1

ri
�i, �27�

The charge density, �i, is given by the total charge density in
Eq. �3�. Qi is total charge enclosed by a cylindrical surface
with radius ri and surface area Ai. The shooting procedure is
performed in two stages. First, integration is carried out in a
forward direction from the center of the bilayer, where the
correct value of � is sought which gives the correct outer
boundary condition, limr→� ��r�=0. Next, shooting is per-
formed in reverse from this value, this time the search being
for the correct value of V0 which is consistent with
limr→0 ��r�=V0 and ���0�=0.

The electrostatic potential difference arises due to a
charge imbalance between the two leaflets of the bilayer. The
bilayer as a whole is neutral and this charge imbalance,
which is imposed experimentally through the voltage-clamp
apparatus, is localized to the immediate vicinity of each
bilayer-solvent interface �30,31�. Computationally, the
charge imbalance is specified by the integrated charge of the

inner leaflet and it’s associated electrolyte. A search for the
particular quantity of this charge is carried out in order to
produce the desired potential difference. The value of
limx→+� ��r� is taken to be zero and the potential difference
is denoted V0. Representative solutions are shown in Fig. 2.

III. RESULTS

A. Flexoelectricity and the electrostatics of bilayer bending

To examine flexoelectricity, we must relate the free en-
ergy of our bilayer system to the applied voltage, V0, and
curvature, c. We consider cylindrically shaped bilayers only,
so there is a single curvature c=1 /R, where R is the radius of
curvature, measured from the center of the cylinder to the
center of the bilayer. We compute the electrostatic compo-
nent of the free-energy per unit area of bending for the �cy-
lindrically shaped� bilayer system, �fel=�Fel /A. This is
given by the free energy difference between the flat and
curved case with V0 held fixed,

�fel�c,V0� = fel�c,V0� − fel�0,V0� , �28�

where the subscript el refers to the component of the overall
free energy that is strictly electrostatic.

We consider a bilayer, in which there is no lipid exchange
between the inner and outer leaflet. �In cells, lipid exchange
between the inner and outer leaflet is catalyzed by flippases
which operate on the time scale of tens of minutes �32��. As
curvature is introduced, the fixed charges in the inner leaflet
are compressed and charges on the outer leaflet are ex-
panded,
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�0�r;R� = �0�r;R → �� 
R

r
, �29�

where r is the coordinate perpendicular to the membrane.
Results for �fel are shown in Fig. 3. For comparison,

results are also shown in which dynamic ion adsorption is
neglected �fixed n+ in the bilayer region�; the voltage depen-
dence of these curves is found to be critically dependent on
this adsorption.

It is interesting to first consider the curves in Figs. 3�a�
and 3�b�, which correspond to zero applied voltage �or more
accurately, where the voltage is clamped at 0 mV�. The elec-
trostatic energy in this case increases quadratically with bi-
layer curvature, i.e., there is an electrostatic contribution to
the bending modulus. This contribution is significant: non-
linear least-squares fits �to �fel=

1
2�elc

2� provide an estimate
for the bending modulus of �el=10 kBT in Fig. 3�a� and
�el=6 kBT in Fig. 3�b�. These values may be compared to an
experiment �33� which estimated this electrostatic contribu-
tion to the bending modulus to be 3–5 kBT for dimyris-
toylphosphatidylcholine vessicles. For comparison, a typical
value for the overall bending modulus of a bilayer is
�20 kBT.

Subtracting the V0=0 mV curve gives the component of
bending free energy which is strictly voltage dependent,
which we shall call �fV. The results �shown in Fig. 4� sug-
gest the following functional form:

�fV�c,V0� = − �V0c , �30�

where � is an electromechanical coupling constant. It makes
sense to partition the total free energy of Eq. �1� into a part
that describes V0=0 and a part that describes the dependence
on the voltage,

�f�c,V0� = �f0�c� + �fV�c,V0� = �1

2
�c2 + �� − �V0c .

�31�

This functional form is in agreement with the expression of
Glassinger and Raphael �34� which used a phenomenological
electromechanical coupling coefficient. Here, we see that the
microscopic model is able to compute the coupling coeffi-
cient �. Moreover, although we do not assume a linear model
from the onset, evidently the model predicts a bilinear cou-
pling term between voltage and curvature.

1. Direct flexoelectric effect

The direct flexoelectric effect describes the generation of
an electric potential difference across a membrane as a result
of deformation �1�. The relationship is phenomonologically
linear, and in the case of a cylindrically shaped bilayer can
be expressed,

V0 =
f

�0
c . �32�

The proportionality constant, f , is called the direct flexoco-
efficient. In this situation, voltages develop in the absence of
any charge separation across the membrane. The results from
our model are shown in Fig. 5.

Experimental measurements for the flexocoefficient have
been made on a variety of membranes and suggest a range of
��0.1–100�e �35� although a few units of electric charge are
typical. Estimates provided by our model are 0.025 e for the
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case where bilayer charges are fixed and 0.019 e when bi-
layer charges are computed using Eq. �22�. It is observed that
when bilayer charges are permitted to rearrange, they will do
so in order to reduce curvature induced voltages and, there-
fore, the system free energy.

Analytical expressions for f have been worked out in �14�
by solving the linearized Poisson-Boltzmann Equation for a
bilayer described by two charged plates �their theory does
not take into account any local charge imbalance across the
bilayer�. Adsorption of charges was included using a Lang-
muir isotherm. Their results do not significantly differ from
ours, although direct comparison would require that we map
our charge distributions onto delta functions located at the
bilayer surface. If we choose these surfaces to be separated
by 5.6 nm, their formulas provide flexocoefficients, which
are in perfect agreement with ours.

It is worth commenting that a common definition of the
direct flexoelectric effect relates curvatures to the electric
polarization of the bilayer, a reference to the original liquid
crystal flexoelectricity proposed by Meyer �36�,

Ps = fc , �33�

=
1

R
� drrp�r� , �34�

where p�r� is the polarization shown in Fig. 2. We find that
this definition leads to flexocoefficients which are an order of
magnitude larger and of opposite sign than those obtained
using Eq. �32�. This sign change occurs because the medium
in the vicinity of the inner leaflet, although more polarized,
occupies a smaller volume than that of the outer leaflet.
Thus, the integrated polarization density and the electric po-
tential difference carry opposite orientation.

2. Converse flexoelectric effect

The manifestation of flexoelectricity, which is reciprocal
to the direct effect is called the converse flexoelectric effect.

This describes curvatures which are induced by applied elec-
tric fields according to the phenomonological relationship
�1�,

cmin = � f

�
�E . �35�

Here, cmin is the equilibrium curvature that minimizes the
total free energy. The constant f is the converse flexocoeffi-
cient, � is the elastic bending modulus, and E is the electric
field, which will be assumed to be uniform within the bi-
layer, E=V0 /h, when making estimates for f . According to
our model,

cmin =
�

�
V0, �36�

so that we may write

f = �h , �37�

which for our model ��=0.0159 e /nm� gives an estimate of
f =0.095 e.

3. Moment of bilayer bending

The interactions between lipid bilayers and mechanosen-
sitive membrane channels has been the subject of experi-
ments and simulations studies �37–39�. Lipid molecules ex-
ert a pressure on membrane proteins; these pressures are
expressed as a lateral pressure profile. When an external volt-
age is applied, an additional pressure which is antisymmetri-
cal will appear and the bilayer will undergo a deformation
until this asymmetry is dissipated and the membrane will
attain an equilibrium curvature.

We consider a flat bilayer of thickness h, in which the
pressure is written in terms of two components,

p�z,V0� = p0�z� + �p�z,V0� , �38�

where z is the coordinate perpendicular to the bilayer surface
�z=0 is taken to be the bilayer midplane�. p0 is the intrinsic
membrane pressure profile in absence of voltages and �p is
the voltage-dependent component. We shall assume that the
voltage-dependent pressure is proportional to the distance
from the midplane, �p�z ,V0�=��V0�z. The amount of work
performed by �p on the bilayer to generate curvature dc can
be written

dw = �
−h/2

+h/2

�p�z,V0�zdzdc = − ��V0�
2

3
�h

2
�3

dc . �39�

Therefore the moment of bilayer bending can be related to
the electromechanical coupling constant, � of Eq. �30�,

 �w

�c


c=0
= − ��V0�

h3

12
= − �V0, �40�

��V0� =
12

h3 �V0. �41�

The magnitude of �p will be largest at the bilayer surface
�z= �h /2�, where
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��pmax� =
6

h2�V0. �42�

These pressures, shown in Table I, are small. Therefore, our
model indicates that flexoelectricity does not appreciably
contribute to the voltage sensitivity of ion channels or other
membrane proteins.

B. Electromechanical forces in membrane tether experiments

Predictions of the flexoelectric properties of membranes
can be obtained from membrane tether experiments using a
setup depicted in Fig. 6 �40�. A large vesicle or a cell is
voltage clamped such that the interior has a fixed potential,
V0. A tether is then pulled from it with an optical tweezer and
the voltage-dependent tensile force experienced by the tether
is recorded. This experiment is a sensitive test of electrome-
chanical coupling in bilayers.

An estimate for these voltage-dependent tensile forces can
be obtained within the framework of our model. For simplic-
ity, we neglect any complex geometries of the bilayer occur-
ring at the boundaries of the tether near the vesicle body; for
long tethers, these geometries do not contribute to the tether
tension �41�. We consider forces from a pure cylindrical bi-
layer membrane tether. In a real cell, however, other struc-
tures such as the cytoskeletal cortex and transmembrane pro-
teins will change the mechanical properties of the membrane.
Furthermore, the phospholipid composition of the inner and
outer leaflet is not symmetric and transmembrane proteins
will also effectively change the charge distributions of Fig. 1.
Therefore, quantitative predictions of cellular results requires
more experimental information. Nevertheless, the basic
framework to explain the results remains the same.

For a membrane tether of length L and radius R, the ten-
sile force is the derivative of the total free energy with re-
spect to the tether length: �=−�F /�L. Using Eq. �31�, this
force is

� = −
2�

c

1

2
�c2 + � − �V0c� �43�

where � is the bending modulus and � is the surface tension
of the membrane. For typical membrane with mechanical
parameters of �=20 kBT and �=0.05 kBT /nm2 �42,43�, � is
on the order of 10 pN. There is also a contribution from
in-plane deformation of the bilayer in response to the volt-
age. Such deformations are a consequence of the Maxwell

stress tensor �44,45� and will introduce a voltage-dependence
to the � parameter. However, calculations from our model
show that this contribution is small when compared to the
out-of-plane electromechanical coupling and are neglected
here. The equilibrium radius of the tether is obtained by
minimizing Eq. �43� with respect to curvature,

Rmin = cmin
−1 =� �

2�
, �44�

which gives the following expression for the observed tether
force,

� = − 2���2�� − �V0� . �45�

Although the absolute value of this force depends the choice
for the parameters � and �, the changes in recorded tension
as a cell or vesicle undergoes a voltage cycle depends only
upon �. The linear relationship between voltage and tension
is observed in experiments, the amount that the recorded
tension changes per mV of clamped voltage is referred to as
the electromechanical gain �3,46�, which coincides with our
term 2��. Comparing the model predictions with experi-

TABLE I. The magnitude of the maximum voltage-induced
pressure within a bilayer over a range of transmembrane potentials.
Our models predict that pressures from flexoelectric response of the
membrane are too small to make a significant contribution to volt-
age response of transmembrane proteins.

V0

�mV�
��pmax�

�10−3 pN /nm2�

0 0.00

�100 1.15

�200 2.29
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FIG. 6. The experimental setup. A cylindrical tether is drawn
from a vesicle by a bead in an optical trap. The radius of tether is
obtained by minimizing the overall free energy with respect to the
tether radius. As the voltage is changed, the tensile force in the
tether will change. Lower panel illustrates the optical trap force, −�
in Eq. �45�, as a function of both voltage and the radius of the
tether.
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mental measurements obtained from tethers attached to hu-
man embryonic kidney cells �Table II� shows agreement to
within an order of magnitude. Because the electromechanical
behavior of membrane tethers in real cells will be governed
by a number of factors beyond the charge distributions
within the bilayer, future experiments with vesicles where
the lipid composition is controlled can further establish the
validity of our model.

IV. DISCUSSION AND CONCLUSION

In this paper, we developed a molecular-level theory to
understand the physical principles underlying the flexoelec-
tric effect. We ask, to what extent can a simple mean-field
electrostatic description account for experimental observa-
tions? The results are obtained by considering the curvature
and voltage contribution to the free energy. We have shown
that our continuum model for an isotropic and homogeneous
charged lipid bilayer does exhibit compelling flexoelectric
behavior, although the results suggest flexoelectric coeffi-
cients, which are small compared to experimentally observed
values.

It is, however, not entirely clear how reliable the experi-
mental estimates are. Dynamic oscillations of membranes,
for example, are governed by not just the flexoelectric effect,
but also viscoelasticity and a time-dependent surface tension,
making results difficult to assess quantitatively. Observing
AFM tips impinging on immobilized cells likewise requires
that the surface tension contributing to the tip displacements
be estimated through the Lippman equation �11�. Measure-
ments of tensile forces in membrane tethers offers a simple
and experimentally realizable method of obtaining accurate
estimates for flexocoefficients in a static equilibrium regime.
However, these measurements are performed on cells where
membrane composition and the effects of transmembrane
proteins are not controlled. It is desirable to have a set of
measurements where lipid composition, ionic conditions and
membrane tension are known, and a direct comparison be-
tween our model and experimental data would then be en-
lightening. Cellular membranes include proteins whose con-

formational changes and interaction with the membrane may
result in in-plane voltage-dependent deformations. Thus, cel-
lular membranes subjected to electric fields probably exhibit
a three-dimensional response that combines out-of-plane
�flexoelectric� and in-plane �piezoelectric� modes.

Of the variables in our model, the dynamic voltage-
dependent nature of the adsorbed positive charges has the
most marked effect on our results. This raises interesting
questions about how ion adsorption is affected by both volt-
ages and phospholipid densities. A notable simplification in
our model is that changes in the chemical environment asso-
ciated with increasing curvatures, beyond electrostatics, does
not influence adsorption. Further simulation studies are
needed to fully investigate the validity of our model and the
nature of voltage coupled ionic dynamics at the lipid sur-
faces. The present model also assumes a rather simple geom-
etry for the bilayer; more complex models that include thick-
ness variations may introduce interesting effects as well.

Also, the importance of the distribution of charges at the
bilayer surface suggests other interesting quantities to be in-
vestigated. The inclusion of multivalent ions, for example, or
the intercalation of charged amino acid side chains with the
phospholipid headgroups may be significant in determining
membrane mechanical properties in response to voltages.
Voltage-induced penetration of water, which, as a neutral di-
pole couples more weakly to electric fields than do ions, has
been suggested in a mechanism for the electrical disruption
of cell membranes �47�. The inhomogeneity of bilayer com-
position is another feature beyond the scope of the model
presented here which is likely of importance. For example,
the sequestering of cardiolipin in the bilayers of mitochon-
drial cristae has been implicated in the spontaneous and re-
versible formation of narrow tubular structures in response to
changes in pH �48�. The relationship between pH and the
electrical and mechanical properties of bilayers was the sub-
ject of another recent paper �49�.

For the outer hair cell �OHC�, the membrane protein pres-
tin has been identified as a principal component of the motor
complex that converts membrane voltages into active forces
�e.g., �50��. There are a number of electromechanical models
of prestin performance, in one proposed mechanism, prestin
contributes to a dipole moment that drives the flexoelectric
changes in the surrounding membrane �51�. In any case, the
interaction of prestin with the applied electric field �electric
charge transfer�, is critical to the motor performance �52�.
The theoretical framework presented here is useful for de-
scribing the ionic and electrostatic environment near prestin
as well as other membrane proteins when voltages are ap-
plied. Our results also indicate that the voltage-dependent
variations in the lateral pressure profile in the bilayer are
quite small. Proteins such as voltage-gated channels prob-
ably do not experience significant forces from electrome-
chanical coupling in the membrane.

The apparent importance of the flexoelectric paradigm for
electromechanical coupling is not only of interest from a
physiological point of view. It also has relevance to chemical
biosensing in engineering applications �2�. Our work here
lays out the theoretical foundations of this phenomenon and
makes a connection of the molecular composition of the
membrane; we also point out that further experimental inves-

TABLE II. Electromechanical gain, � /V0, predicted by our
model with various treatments for ion adsorption. Presented for
comparison are some experimental results obtained from cell mem-
brane tethers.

Model
EM gain
�pN/mV�

Fixed Bilayer Charges 0.0001

Langmuir Isotherm 0.007

Molecular Field 0.016

Experiment

HEK cella 0.026

Outer Hair cellb 0.3

aReference �40�.
bReference �46�.
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tigations of the effect can be done using membrane tethers.
Direct verification of many of the predictions of the model
is possible with currently available optical tweezer technolo-
gies, computer simulations, and would shed light on the as-
sumptions in the model.
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